Effects of a ketogenic diet on hippocampal plasticity in freely moving juvenile rats
نویسندگان
چکیده
Ketogenic diets are low-carbohydrate, sufficient protein, high-fat diets with anticonvulsant activity used primarily as a treatment for pediatric epilepsy. The anticonvulsant mechanism is thought to involve elevating inhibition and/or otherwise limiting excitability in the brain. Such a mechanism, however, might also significantly affect normal brain activity and limit synaptic plasticity, effects that would be important to consider in the developing brain. To assess ketogenic diet effects on synaptic transmission and plasticity, electrophysiological recordings were performed at the perforant path/dentate gyrus synapse in awake, freely-behaving juvenile male rats. Electrodes were implanted 1 week prior to recording. Animals were fed regular chow or a ketogenic diet ad libitum for 3 weeks before recording. Although the ketogenic diet did not significantly alter baseline excitability (assessed by input-output curves) or short-term plasticity (using the paired-pulse ratio), it did reduce the magnitude of long-term potentiation at all poststimulation timepoints out to the last time measured (48 h). The results suggest an effect of ketogenic diet-feeding on the induction magnitude but not the maintenance of long-term potentiation. The lack of effect of the diet on baseline transmission and the paired-pulse ratio suggests a mechanism that limits excitation preferentially in conditions of strong stimulation, consonant with clinical reports in which the ketogenic diet alleviates seizures without a major impact on normal brain activity. Limiting plasticity in a seizure-susceptible network may limit seizure-induced epileptogenesis which may subserve the ongoing benefit of the ketogenic diet in epilepsy.
منابع مشابه
A ketogenic diet reduces long-term potentiation in the dentate gyrus of freely behaving rats.
Ketogenic diets are very low in carbohydrates and can reduce epileptic seizures significantly. This dietary therapy is particularly effective in pediatric and drug-resistant epilepsy. Hypothesized anticonvulsant mechanisms of ketogenic diets focus on increased inhibition and/or decreased excitability/excitation. Either of these consequences might not only reduce seizures, but also could affect ...
متن کاملA ketogenic diet reduces long - term potentiation in the dentate gyrus of freely - 3 behaving rats
31 Ketogenic diets are very low in carbohydrates and can reduce epileptic seizures significantly. 32 This dietary therapy is particularly effective in pediatric and drug-resistant epilepsy. 33 Hypothesized anticonvulsant mechanisms of ketogenic diets focus on increased inhibition and/or 34 decreased excitability/excitation. Either of these consequences might not only reduce seizures 35 but coul...
متن کاملThe state dependency effect of morphine on memory by behavioral and electrophysiological methods in freely moving rats
Endogenous opioid system agonists exert amnestic effects in different models of memory. It has been suggested that these amnestic effects may be linked indirectly to state-dependent learning. Accordingly pre-training administration of morphine can impair the retrieval of learned tasks in a state dependent manner, which is reversible by pre test morphine administration. In this study, state depe...
متن کاملThe state dependency effect of morphine on memory by behavioral and electrophysiological methods in freely moving rats
Endogenous opioid system agonists exert amnestic effects in different models of memory. It has been suggested that these amnestic effects may be linked indirectly to state-dependent learning. Accordingly pre-training administration of morphine can impair the retrieval of learned tasks in a state dependent manner, which is reversible by pre test morphine administration. In this study, state depe...
متن کاملSpatial Learning and Memory in Barnes Maze Test and Synaptic Potentiation in Schaffer Collateral-CA1 Synapses of Dorsal Hippocampus in Freely Moving Rats
Introduction: Synaptic plasticity has been suggested as the primary physiological mechanism underlying memory formation. Many experimental approaches have been used to investigate whether the mechanisms underlying long-term potentiation (LTP) are activated during learning. Nevertheless, little evidence states that hippocampal-dependent learning triggers synaptic plasticity. In this study, we in...
متن کامل